Arithmetic subderivatives and Leibniz-additive functions
نویسندگان
چکیده
منابع مشابه
Functional Analysis and Additive Arithmetic Functions
1. A function is arithmetic if it is defined on the positive integers. Those arithmetic functions which assume real values and satisfy f(ab)-f(a)+f(b) for mutually prime integers a, b are classically called additive. The following examples illustrate the interest of these functions, both for themselves and for their applications. An additive function is defined by its values on the prime powers...
متن کامل(i) Additive Arithmetic Functions Bounded by Monotone Functions on Thin Sets
1 . An arithmetic function f(n) is said to be additive if it satisfies the relation f(ob) = f(a)+f(b) for every pair of coprime positive integers a, b . In this paper we establish two results to the effect that an additive function which is not too large on many integers cannot often be large on the primes . If a l <a,< . . . is a sequence of positive integers, let A(x) denote ttie number of su...
متن کاملContinuity of super- and sub-additive transformations of continuous functions
We prove a continuity inheritance property for super- and sub-additive transformations of non-negative continuous multivariate functions defined on the domain of all non-negative points and vanishing at the origin. As a corollary of this result we obtain that super- and sub-additive transformations of continuous aggregation functions are again continuous aggregation functions.
متن کاملApproximately generalized additive functions in several variables
The goal of this paper is to investigate the solutionand stability in random normed spaces, in non--Archimedean spacesand also in $p$--Banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.
متن کاملA general strong law of large numbers for additive arithmetic functions
Let f(n) be a strongly additive complex valued arithmetic function. Under mild conditions on f , we prove the following weighted strong law of large numbers: if X, X1, X2, . . . is any sequence of integrable i.i.d. random variables, then lim N→∞ ∑ N n=1 f(n)Xn ∑ N n=1 f(n) a.s. = EX.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Mathematicae et Informaticae
سال: 2019
ISSN: 1787-5021,1787-6117
DOI: 10.33039/ami.2019.03.003